Alexander M. Chang Email: <u>achang67@stanford.edu</u> Department of Chemistry | Stanford University

EDUCATION

2019 - Present	Stanford University Stanford, CA
	Ph.D. Theoretical Chemistry
	Research Advisor: Prof. Todd J. Martínez
2015 – 2019	Yale University New Haven, CT B.S. Chemistry, Applied Mathematics (Distinction in both Majors) Research Advisor: Prof. Victor S. Batista Cumulative GPA: 3.80/4.00

AWARDS & HONORS

2023	Linus Pauling Teaching Award Stanford University – Department of Chemistry
2021 – 2024	National Science Foundation Graduate Research Fellowship National Science Foundation
2020	Outstanding Graduate Student Poster - Virtual Conference of Theoretical Chemistry 2020
2019 - 2022	Stanford Graduate Fellowship in Science and Engineering Stanford University – Department of Chemistry
2019	Arthur Fleischer Award (for Outstanding Performance in Chemistry) Yale University – Department of Chemistry
2016	Yale College Freshman Summer Research Fellowship Yale University

TEACHING & OUTREACH

Fall 2023	 Center for Teaching and Learning Teaching Advancement Grant Designing lab for Chem 31A (General Chemistry) that integrates Interactive Molecular Dynamics in virtual reality into curriculum Acquired grant money and partnered with Stanford Virtual Human Interaction Lab to supply Oculus VR headsets for students
2023 -	 Stanford Jail & Prison Education Project Designed course with team of co-lecturers for inmates in San Francisco jail Gave lectures on chemical bonding adapted for jail classroom (<i>e.g.</i> no electronics)
Spring 2023	SplashTaught high schoolers chemistry using interactive molecular dynamics in virtual reality
Fall 2022	 Chem 31A (General Chemistry) Head Teaching Assistant Managed day-to-day logistics for 300-student course Led team of first-year TAs, delegated their duties and organized office hour/lab schedules

	Helped create exams and write answer key as well as design novel questions for studentsRan grading sessions of TAs and mercenary graders for three midterms and final exam
2021 – 2023	 Stanford Future Advancers of Science and Technology (FAST) Mentor 2021-2022: Designed machine learning project for student to predict Amazon booksales Helped student learn how to code in python via weekly Saturday FAST sessions 2022-2023: Designed math-based freezing point depression project for student Tailored experimental design to fit student's interest in calculus
Summer 2021	 Martinez Group Summer School Lecturer Gave 3-hour lecture on enhanced sampling methods for free energy calculations Created and graded homework assignments based on lecture material
Fall 2020	 Chem 33 (Organic Chemistry) Teaching Assistant Stanford University Served as Exam TA: helped make, vet, and grade 8 quizzes and 2 exams Held 6 office hours a week Guided students through practice problems in breakout rooms during lectures
2019, 2021-2023	Mercenary Grader for General ChemistryGraded midterms and final exam for Stanford general chemistry classes
2019	 Yale Young Global Scholars Instructor Yale University Guided high schoolers on their own machine learning research projects Created/gave seminars on probability, machine learning, research ethics, and geophysics Led discussion sections on lectures by Yale faculty
2018	 Center for Teaching and Learning Science & QR Tutor Yale University Tutored freshmen each for 1 hr/week in organic chemistry
2015 - 2016	MathCounts Outreach Instructor Nathan Hale School, New Haven CT Created lecture plans and led group sessions for MathCounts

PUBLICATIONS

- 05. Efficient Acceleration of Reaction Discovery in the *Ab Initio Nanoreactor*: Phenyl Radical Oxidation Chemistry **Chang, A. M.**; Meisner, J.; Xu, R.; Martínez, T. J., *Journal of Physical Chemistry A*, **2023**, DOI: <u>10.1021/acs.jpca.3c05484</u>
- 04. First Principles Reaction Discovery: From the Schrodinger Equation to Experimental Prediction for Methane Pyrolysis Xu, R.; Meisner, J.; **Chang, A. M**.; Thompson, K. C.; Martínez, T. J., *Chem. Sci.* **2023**
- 03. The non-adiabatic nanoreactor: towards the automated discovery of photochemistry Pieri, E.; Lahana, D.; **Chang, A. M**.; Aldaz, C. R.; Thompson, K. C.; Martínez, T. J., *Chem. Sci.* **2021**
- 02. Hammett Neural Networks: Prediction of Frontier Orbital Energies of Tungsten-Benzylidyne Photoredox Complexes Chang, A. M.; Freeze, J. G.; Batista, V. S., *Chem. Sci.*, **2019**, *10*, 6844-6854.
- Inverse Design of a Catalyst for Aqueous CO/CO₂ Conversion Informed by the Ni^{II}-iminothiolate Complex
 Chang, A. M.; Rudshteyn, B.; Batista, V. S., *Inorg. Chem.* 2018, *57* (24), 15474-15480.

RESEARCH

2019 – Present	 Graduate Student, Stanford University Advisor: Prof. Todd J. Martínez Developing and applying <i>ab initio</i> nanoreactor framework and codebase Created novel reaction discovery methods for accelerated molecular dynamics Analyzed and compared efficiencies and biases of various reaction-accelerating forces
2017 – 2019	 Undergraduate Researcher, Yale University Advisor: Prof. Victor S. Batista Used a tight-binding linear combination of atomic potentials (TB-LCAP) inverse design to discover optimal nickel catalysts for CO oxidation; ran density functional theory (DFT) calculations on catalytic cycle, including relaxed scans and transition state calculations. Developed novel neural network methodology using Hammett parameters to describe ligands of tungsten catalyst for molecular design; employed machine learning techniques to examine data and hypothesize chemical theory behind mathematical trends. Created inverse design gradient descent algorithm using neural network scoring function to optimize catalyst ligands for reductive power
Summer 2016	Undergraduate Researcher, Yale University Advisor: Prof. Seth HerzonAided in synthesis of precolibactins

POSTER PRESENTATIONS

2023	West Coast Conference on Theoretical Chemistry Davis, CA
2022	American Conference on Theoretical Chemistry Olympic Valley, CA
2021	Bay Area Theoretical Chemistry Virtual Poster Session
2020	Virtual Conference of Theoretical Chemistry 2020
2019	257th ACS National Meeting Orlando, FL
2018	Boston University Cokerfest Symposium Boston, MA

<u>SKILLS</u>

Language/Script:	Python, R, Bash, LaTeX, C
Programs:	VMD, Gaussian, TeraChem, Avogadro, Keras/TensorFlow, ChemDraw, Excel, Prism

LEADERSHIP & VOLUNTEER EXPERIENCES

2020 - 2021	Student Affairs Committee for Chemistry Department Stanford University
2016 - 2018	Volunteers Around the World Yale Chapter Peru; Dominican Republic 2017 – 2018 Team Co-Leader and Head of Finances
2015 - 2019	Davenport Pops Orchestra Yale University 2017 – 2018 Director of Development 2016 – 2017 Treasurer